Langsung ke konten utama

Law of Resistance and Units of Resistivity

Every conductor has resistance that depending on the following factors:
    1). it varies direcly as its length, l
    2). it varies inversely as the cross-section A of the conductor.
    3). it depends on the nature of material.
    4). it depending on the temperature of the conductor.
Ignoring the last factor fo the time being, we can say that:
where:
"R" is resistance of the conductor (ohm) "READ : The Unit of Resistance"
"l" is the length of the condutor (metre)
"A" is the area of cross section of the conductor (metre^2)
is a constant depending on the nature of the material of the conductor known as its specific resistance or resistivity, that will be discussed in Unit of Resistivity

from the equetion above, we will know how to get good conductor. good conductors those with little resistace. "READ ALSO: good resistance in Modern Electron Theory". 

statemen 1
the longger the conductor the greater the resistance and vice verse the shorter conductor the smaller the resistance.

statemen 2
statement 2 is contradict statement 1. stattemen 2 said the greater the cross area (A) of the conductor the smaller the resistance and vice verse the smaller the cross area (A) of the conductor the greater the resistance.

figure 1
 figure 2
figure 3

     1) Compare figure 1 and figure 2, which figure that has smaller resistance?
     2) Compare figure 2 and figure 3, which figure that has smaller resistance?
     "you write your answer in comment comment field"
Unit of Resistivity
resistivity is the nature material of conductor. the equetion of resistivity:


 Where:
     "m" is mass of thing (kg)
     "V" is volume of the thing (m^3)

S.I. system of units resistivity is ohm-metre.
    It may, however, be noted that resistivity is sometime expressed as so many ohm per m^3. although it is incorrect to say so, but it means the same thing as ohm-metre. if 'l' in centimetres and A in cm^3, then  in ohm-centimetre.
    Values of resistivity and temperature coefficients for various materials are given in table  below.

Table of resistivity and temperature coefficient






Komentar

Postingan populer dari blog ini

Modern Electron Theory

     Modern research has ebtablished that all matter whether solid, liquid, or gaseous, consists of minute particles called molecules which are them selves made up of still minute particles known as atoms. Those substances whose molecules consist of similar atoms  are known as elements (as shown in figure 1) Figure 1 (  http://gb.scientificgems.wordpress.com/) and those whose molecules consist of dissimilar atoms are called compounds (as shown in figure 2).  Figure 2 (https://prodiipa.wordpress.com/) An atom is taken to consist of the following:  1).  It has a hard central core known as nucleus. It contains two types of particlesor; one is known as proton and carries positive charge, the other is neutron (discovered by Chadwick in 1932), which is electrically neutral i.e. it carries no charge though it is as haevy as proton. The protons and neutrons are very closely held together with tremendous forces.  2). Revolving round the relatively massive nucleus, in more or

Effect of Temperature on Resistance and Temperature-Coefficient of Resistance

Effect of Temperature on Resistance     we have explain erlier (Law of Resistance) that resistance of the conductor dipending on temprature. so that, here we will show you the effect of rise in temperature:     1) to increase the resistance of pure metal. The increase is large and fairy regular for normal ranges of temperature. The temperature/resistance graph is a straght line (figure 1).     2) to increase the resisrance of alloys, though, in their case, the increase is relatively small and irregular. for some high-resistance alloys like eureka (60% Cu and 40% Ni) and manganin, the increase in resistance is negligible ove a considerable range of temperature.    3) to decrease the resistance of electrolytes, insulators (such as paper, rubber, glass, mica, etc.) and partial conductors such as carbon. hence, insulators are said to prossess a negative temperature-coefisient of resistance. figure 1 ( The temperature/resistance graph) Temperature-Coefficient of Resistance

The Unit of Resistance

   The practical unit of resistance is Ohm. A conductor is said to have resistance of one ohm if it permits one ampere current to flow through it when one volt is impressed  across its terminals. Ohm The symbol of ohm is shown below. the ohm symbol Table (multiples and submultiples of Ohm)     For insulator whose resistance are vey high, a much bigger unit is used i.e, mega-Ohm = 10^6 ohm (the prefix 'mega' or 'mego' meaning a million) or kiliohm=10^3 ohm (the prefix 'kilo' meaning thousand). in the case  of vey small resistance , smaller units like miliohm = 10^-3 ohmor microohm = 10^-6 are used. Read also: Resistance