Langsung ke konten utama

Resistance


Figure 1
    It may be defined as the property of a substance due to which it opposes the flow of electricity (Read: The Ide of Electric Potential) throug it. 
     Metal (as a class), acids and salt solutions are good conductors of electricity. amongst pure metals, silver, copper, and aluminium are vey good conductors in the given order. This, as discussed earlier (Read: Modern Electron Theory), is due to the presence of a large number of free or loosely-attached electrons in their atoms. These vagrant electrons assume a derected motion on the application of an electric potential difference. These electrons while flowing pass throug the molecules or the atoms of the conductor, collide with other atoms and electrons, thereby producing heat.
               Figure 2 metal ( https://www.imperiummultiniaga.com)

   Figure 3 copper (http://www.hoo-tronik.com)
    These substances which offer relatively greater difficulty or hindrance to the passage of these electrons are said to be relatively poor conductors of electricity like bakelite, mica, glass, rubber, p.v.v (polyvinly chloride ) and dry wood etc. amongst good insulators can be included fibrous substance such as paper and cotton when dry, mineral oils free from acids and water, ceramics like hard porcelin and asbestos and many other plastics besides p.v.c. 

Komentar

Postingan populer dari blog ini

Modern Electron Theory

     Modern research has ebtablished that all matter whether solid, liquid, or gaseous, consists of minute particles called molecules which are them selves made up of still minute particles known as atoms. Those substances whose molecules consist of similar atoms  are known as elements (as shown in figure 1) Figure 1 (  http://gb.scientificgems.wordpress.com/) and those whose molecules consist of dissimilar atoms are called compounds (as shown in figure 2).  Figure 2 (https://prodiipa.wordpress.com/) An atom is taken to consist of the following:  1).  It has a hard central core known as nucleus. It contains two types of particlesor; one is known as proton and carries positive charge, the other is neutron (discovered by Chadwick in 1932), which is electrically neutral i.e. it carries no charge though it is as haevy as proton. The protons and neutrons are very closely held together with tremendous forces.  2). Revolving round the relatively massive nucleus, in more or

Effect of Temperature on Resistance and Temperature-Coefficient of Resistance

Effect of Temperature on Resistance     we have explain erlier (Law of Resistance) that resistance of the conductor dipending on temprature. so that, here we will show you the effect of rise in temperature:     1) to increase the resistance of pure metal. The increase is large and fairy regular for normal ranges of temperature. The temperature/resistance graph is a straght line (figure 1).     2) to increase the resisrance of alloys, though, in their case, the increase is relatively small and irregular. for some high-resistance alloys like eureka (60% Cu and 40% Ni) and manganin, the increase in resistance is negligible ove a considerable range of temperature.    3) to decrease the resistance of electrolytes, insulators (such as paper, rubber, glass, mica, etc.) and partial conductors such as carbon. hence, insulators are said to prossess a negative temperature-coefisient of resistance. figure 1 ( The temperature/resistance graph) Temperature-Coefficient of Resistance

The Unit of Resistance

   The practical unit of resistance is Ohm. A conductor is said to have resistance of one ohm if it permits one ampere current to flow through it when one volt is impressed  across its terminals. Ohm The symbol of ohm is shown below. the ohm symbol Table (multiples and submultiples of Ohm)     For insulator whose resistance are vey high, a much bigger unit is used i.e, mega-Ohm = 10^6 ohm (the prefix 'mega' or 'mego' meaning a million) or kiliohm=10^3 ohm (the prefix 'kilo' meaning thousand). in the case  of vey small resistance , smaller units like miliohm = 10^-3 ohmor microohm = 10^-6 are used. Read also: Resistance